Incremental entropy-based clustering on categorical data streams with concept drift

نویسندگان

  • Yanhong Li
  • Deyu Li
  • Suge Wang
  • Yanhui Zhai
چکیده

Clustering on categorical data streams is a relatively new field that has not received as much attention as static data and numerical data streams. One of the main difficulties in categorical data analysis is lacking in an appropriate way to define the similarity or dissimilarity measure on data. In this paper, we propose three dissimilarity measures: a point-cluster dissimilarity measure (based on incremental entropy), a cluster–cluster dissimilarity measure (based on incremental entropy) and a dissimilarity measure between two cluster distributions (based on sample standard deviation). We then propose an integrated framework for clustering categorical data streams with three algorithms: Minimal Dissimilarity Data Labeling (MDDL), Concept Drift Detection (CDD) and Cluster Evolving Analysis (CEA). We also make comparisons with other algorithms on several data streams synthesized from real data sets. Experiments show that the proposed algorithms are more effective in generating clustering results and detecting concept drift. 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Detecting the Change of Clustering Structure in Categorical Data Streams

Analyzing clustering structures in data streams can provide critical information for making decision in realtime. Most research has been focused on clustering algorithms for data streams. We argue that, more importantly, we need to monitor the change of clustering structure online. In this paper, we present a framework for detecting the change of critical clustering structure in categorical dat...

متن کامل

Incremental Clustering for the Classification of Concept-Drifting Data Streams

Concept drift is a common phenomenon in streaming data environments and constitutes an interesting challenge for researchers in the machine learning and data mining community. This paper proposes a probabilistic representation model for data stream classification and investigates the use of incremental clustering algorithms in order to identify and adapt to concept drift. An experimental study ...

متن کامل

Dynamic Weighted Majority for Incremental Learning of Imbalanced Data Streams with Concept Drift

Concept drifts occurring in data streams will jeopardize the accuracy and stability of the online learning process. If the data stream is imbalanced, it will be even more challenging to detect and cure the concept drift. In the literature, these two problems have been intensively addressed separately, but have yet to be well studied when they occur together. In this paper, we propose a chunk-ba...

متن کامل

ODAC: Hierarchical Clustering of Time Series Data Streams

This paper presents a time series whole clustering system that incrementally constructs a tree-like hierarchy of clusters, using a top-down strategy. The Online Divisive-Agglomerative Clustering (ODAC) system uses a correlation-based dissimilarity measure between time series over a data stream and possesses an agglomerative phase to enhance a dynamic behavior capable of concept drift detection....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2014